4F2hc stabilizes GLUT1 protein and increases glucose transport activity.

نویسندگان

  • Haruya Ohno
  • Yusuke Nakatsu
  • Hideyuki Sakoda
  • Akifumi Kushiyama
  • Hiraku Ono
  • Midori Fujishiro
  • Yuichiro Otani
  • Hirofumi Okubo
  • Masayasu Yoneda
  • Toshiaki Fukushima
  • Yoshihiro Tsuchiya
  • Hideaki Kamata
  • Fusanori Nishimura
  • Hiroki Kurihara
  • Hideki Katagiri
  • Yoshitomo Oka
  • Tomoichiro Asano
چکیده

Glucose transporter 1 (GLUT1) is widely distributed throughout various tissues and contributes to insulin-independent basal glucose uptake. Using a split-ubiquitin membrane yeast two-hybrid system, we newly identified 4F2 heavy chain (4F2hc) as a membrane protein interacting with GLUT1. Though 4F2hc reportedly forms heterodimeric complexes between amino acid transporters, such as LAT1 and LAT2, and regulates amino acid uptake, we investigated the effects of 4F2hc on GLUT1 expression and the associated glucose uptake. First, FLAG-tagged 4F2hc and hemagglutinin-tagged GLUT1 were overexpressed in human embryonic kidney 293 cells and their association was confirmed by coimmunoprecipitation. The green fluorescent protein-tagged 4F2hc and DsRed-tagged GLUT1 showed significant, but incomplete, colocalization at the plasma membrane. In addition, an endogenous association between GLUT1 and 4F2hc was demonstrated using mouse brain tissue and HeLa cells. Interestingly, overexpression of 4F2hc increased the amount of GLUT1 protein in HeLa and HepG2 cells with increased glucose uptake. In contrast, small interfering RNA (siRNA)-mediated 4F2hc gene suppression markedly reduced GLUT1 protein in both cell types, with reduced glucose uptake. While GLUT1 mRNA levels were not affected by overexpression or gene silencing of 4F2hc, GLUT1 degradation after the addition of cycloheximide was significantly suppressed by 4F2hc overexpression and increased by 4F2hc siRNA treatment. Taken together, these observations indicate that 4F2hc is likely to be involved in GLUT1 stabilization and to contribute to the regulation of not only amino acid but also glucose metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replacement of intracellular C-terminal domain of GLUT1 glucose transporter with that of GLUT2 increases Vmax and Km of transport activity.

The intracellular C-terminal domain is diverse in size and amino acid sequence among facilitative glucose transporter isoforms. The characteristics of glucose transport are also divergent, and GLUT2 has far higher Km and Vmax values compared with GLUT1. To investigate the role of the intracellular C-terminal domain in glucose transport, we expressed in Chinese hamster ovary cells the mutated GL...

متن کامل

Cell surface labeling of glucose transporter isoform GLUT4 by bis-mannose photolabel. Correlation with stimulation of glucose transport in rat adipose cells by insulin and phorbol ester.

A new impermeant photoaffinity label has been used for identifying cell surface glucose transporters in isolated rat adipose cells. This compound is 2-N-4(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis(D-mannos-4- yloxy)-2- propylamine. We have used this reagent in combination with immunoprecipitation by specific antibodies against the GLUT4 and GLUT1 glucose transporter isoforms to estimate the re...

متن کامل

Regulation of Human Trophoblast GLUT1 Glucose Transporter by Insulin-Like Growth Factor I (IGF-I)

Glucose transport to the fetus across the placenta takes place via glucose transporters in the opposing faces of the barrier layer, the microvillous and basal membranes of the syncytiotrophoblast. While basal membrane content of the GLUT1 glucose transporter appears to be the rate-limiting step in transplacental transport, the factors regulating transporter expression and activity are largely u...

متن کامل

A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression.

Glucose transport is a highly regulated process and is dependent on a variety of signaling events. Glycogen synthase kinase-3 (GSK-3) has been implicated in various aspects of the regulation of glucose transport, but the mechanisms by which GSK-3 activity affects glucose uptake have not been well defined. We report that basal glycogen synthase kinase-3 (GSK-3) activity regulates glucose transpo...

متن کامل

ATM and GLUT1-S490 Phosphorylation Regulate GLUT1 Mediated Transport in Skeletal Muscle

OBJECTIVE The glucose and dehydroascorbic acid (DHA) transporter GLUT1 contains a phosphorylation site, S490, for ataxia telangiectasia mutated (ATM). The objective of this study was to determine whether ATM and GLUT1-S490 regulate GLUT1. RESEARCH DESIGN AND METHODS L6 myoblasts and mouse skeletal muscles were used to study the effects of ATM inhibition, ATM activation, and S490 mutation on G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 300 5  شماره 

صفحات  -

تاریخ انتشار 2011